Electrophoretic deposition of chitosan reinforced graphene oxide-hydroxyapatite on the anodized titanium to improve biological and electrochemical characteristics

N. Karimi, M. Kharaziha*, K. Raeissi
Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

ABSTRACT
Chitosan reinforced hydroxyapatite-graphene oxide (CS-GO-HA) nanocomposite coatings were developed using electrophoretic deposition process in order to improve the biological and electrochemical properties of Ti surface. Moreover, the role of anodized layer on the physical and electrochemical properties of the CS-GO-HA nanocomposite coating was evaluated. After synthesis of HA-GO nanopowder using a sol-gel process, nanocomposite coatings with various concentrations of chitosan (0.5, 1 and 1.5 mg/ml) were produced. Increasing the chitosan content lowered the deposition rate of HA-GO nanoparticles, reduced the coating thickness and diminished apatite-formation ability and biocompatibility. Noticeably, MG63 cell viability significantly reduced from 119.3 ± 5.1 (% control) to 51.9 ± 14.8 (% control), when the chitosan concentration increased from 0.5 to 1.5 mg/ml. In addition, the CS-GO-HA coating containing 0.5 mg/ml chitosan revealed the best barrier property owing to the less crack formation. Furthermore, anodizing of titanium substrate and formation of TiO2 nanotube (TiNT) resulted in the formation of crack-free and homogeneous CS-GO-HA coatings without any observable defect. Moreover, the TiNT formation noticeably improved barrier resistance of the coating (6.7 times) due to better adhesion governed between coating and substrate. Our results confirmed that the surface modification using both anodizing of Ti substrate and electrophoretic deposition of ternary CS-GO-HA nanocomposite coating with 0.5 mg/ml chitosan successfully improves electrochemical properties, bioactivity and cell function, which makes it promising for bone implant applications.

1. Introduction
Despite the wide advancement, metallic biomaterials still account as a considerable portion of clinically applied materials for various implants [1]. Among them, titanium (Ti) and its alloys are the most commonly applied materials for medical implants due to their moderately low elastic modulus, high strength-to-weight ratio and appropriate corrosion resistance, and biocompatibility [1]. Nevertheless, the inert nature of Ti alloys has led to weak bone bonding capability and, therefore, unsatisfactory osseointegration [1].

In the recent decades, numerous surface treatment approaches (e.g. plasma-spray [2], acid-etch treatment [3] and anodizing [4]) as well as bioactive coatings (e.g. hydroxyapatite (HA) [5], bioactive glass [6], magnesium silicates [7] and wollastonite [8]) have been developed on Ti-based samples. Among the bioactive coatings, HA (Ca_{10}(PO_4)_{6}(OH)_{2}) is the most commonly material for bone regeneration thanks to its excellent biocompatibility, osteoconductivity, and similarity with the mineral part of bone and dentin [9,10]. However, the inferior wear resistance and fracture toughness of pure HA lead to crack propagation which reduces corrosion resistance [9,11]. In this regard, various nanocomposite coatings based on HA, consisting of polymers (such as chitosan [12], hyaluronic acid [13,14], alginate acid [15] and chitosan–heparin [16]) and carbon-based materials (such as graphene [17], graphene oxide [18], carbon nanotubes [19]) have been developed. Recently, owing to the unique structure and excellent mechanical, thermal and electrical properties as well as good bactericidal and biocompatibility, graphene-based materials have been employed for various biological applications [10,13,20]. The graphene-based materials, specifically graphene oxide (GO) nanosheets, have been applied as reinforcement agents in nanocomposites to improve mechanical characteristics [10]. Yan et al. [21] developed nanocomposite coatings consisting of GO, HA, and gelatin on TiO2 substrate by electrochemical deposition, and concluded that the addition of GO to the composite coatings improved corrosion resistance and also biocompatibility of the...
coating [21]. The results showed that the oxygenic functional groups presenting on the edges and planes of GO nanosheets could improve the bioactivity of the composites such as gelatin-GO [22] and PCL-GO [23]. However, the bonding strength of ceramic-graphene coatings is often weak and the porous structure of these coatings may reduce the corrosion resistance of metallic substrates [24]. Reduction of porosity in GO-ceramic coating by incorporation of a polymer phase is a promising approach to overcome this issue [12]. Chitosan, a derivative of chitin, is a polysaccharide with non-toxic characteristics, superior biocompatibility, antibacterial property, and biodegradability. Owing to the excellent properties of chitosan, various nanocomposite coatings based on chitosan have been developed [25]. Bumgardner et al. [26] developed the chitosan coating on a titanium substrate and concluded that the chitosan coatings could be used in implants for teeth, skulls, or orthopedic applications.

Various techniques consisting of sol-gel [27], plasma spraying [28] and electrodeposition [29] have been applied to develop nanocomposite coatings. Among them, electrophoretic deposition (EPD) has been considered to develop various polymer, ceramic and nanocomposite coatings owing to cost-effective, simplicity and practical design of complex constructs [30-32]. Li et al. [33] studied the EPD deposition of the GO-hyaluronic acid-HA (GO-HY-HA) nanocomposite coatings and found that the GO prevented from the formation and release of cracks in the coating and improved the corrosion resistance of Ti sample.

Despite the promising results of bioactive coatings on Ti implants, the insufficient adhesion strength between coating and Ti substrate could lead to delamination of coatings and consequently implant failure [34]. To overcome this issue, surface treatment approaches via various physical, chemical and electrochemical techniques have been applied before surface coating process [35]. Among them, anodizing process has been developed to create titania nanotube (TiNT) arrays over a Ti surface [36]. Mokhtari et al. [37] developed TiNT array on the Ti substrate using electrochemical anodizing process as an intermediate layer for chitosan-SBS bioactive glass coating. The TiNT layer significantly improved surface roughness and water contact angle leading to improved bioactivity and antibacterial properties. However, according to our knowledge, the role of anodized TiNT layer on the electrophoretic deposition has not been evaluated, yet.

The aim of this research is to develop a two-layer nanocomposite coating of TiNT/GO-HA-chitosan and study its physical properties, corrosion resistance and biological characteristics. Accordingly, HA-GO nanocomposite powder was primarily synthesized by a simple sol-gel process, before the EPD process. Consequently, after preparation of TiNT on the surface of Ti via anodizing process, the EPD process was performed to coat the chitosan reinforced HA-GO on Ti substrate. In addition, we also investigated the effect of chitosan concentration (0.5, 1 and 1.5 mg/ml) and the EPD deposition processing parameters (voltage and time) on the physical characteristics as well as in-vitro bioactivity and in-vitro osteoblast-like cell responses.

2. Materials and methods

2.1. Materials

GO powder (purity > 99%, thickness: 3.4–7 nm, 6–10 layers) was prepared from Nanosay Co., Iran. Chitosan with low molecular weight, provided from Sigma-Aldrich Co., was used for coating. Calcium nitrate (Ca(NO₃)₂·4H₂O), ammonium dihydrogen phosphate (NH₄H₂PO₄) and ammonium fluoride (NH₄F) were purchased from Merck Co. Commercial pure Ti (grade TA1) sheet with 1 mm thickness, supplied by Sigma-Aldrich Co., was used as the substrate. Deionized distilled (DI) water was used in all experiments.

Before the electrophoretic process, a simple chemical treatment approach was performed on the Ti sheets. In this respect, Ti samples (20 mm × 10 mm × 1 mm) were polished by SiC paper (400 grits) and ultrasonically were cleaned in acetone, alcohol and deionized water (DI), respectively, each one for 30 min and finally were activated for 3 min in HNO₃:HF:H₂O₅ = 30:4:70. All other reagents and solvents of analytical grade were purchased from Sigma-Aldrich and Merck Co.

2.2. Fabrication of anodized titanium nanotubes

Anodizing process was performed according to the previous research [37]. Briefly, the titanium sheets (20 mm × 10 mm × 1 mm) were grounded and polished by grit-sized SiC papers and alumina powder, respectively, and finally, were etched in acid solution (HNO₃:HF: H₂O = 1:1:3) for 15 s. After ultrasonication of the samples in acetone and ethanol, respectively, the anodizing process was performed in glycerol solution containing 0.5 wt% sodium fluoride (NaF) and 12.5 (v/v) % DI water. In order to perform anodizing process, Ti sheet, as the anode electrode, and platinum foil (40 mm × 80 mm), as the cathode electrode, were 3 cm apart and connected to the positive and negative poles of a direct current (DC) power supply (HANElectronics, HE-P35Extra, 30V-5A), respectively. Voltage and time of the anodizing process were optimized at 30 V and 1 h, respectively. After anodizing and formation of titania nanotubes (TiNT), the Ti sheets were washed with DI water and dried at room temperature.

2.3. Synthesis of hydroxyapatite (HA)-graphene oxide (GO) nanoparticles

In order to synthesize HA-GO nanopowder at a weight ratio of 45:3, 100 ml calcium nitrate solution in DI water (0.01 M) was first prepared. After formation of the homogenous solution, 0.003 g of GO was added, stirred for 20 min and consequently was sonicated for 20 min. After adjusting the pH of both solutions to 9 using dilute ammonia solution, 0.1 M ammonium dihydrogen phosphate solution was added to the calcium nitrate solution and mixed for 3 h. Finally, the resulted solution was then dried for 24 h at 70 °C, and subsequently, was calcined for 1 h at 450 °C.

2.4. Electrophoretic deposition of chitosan reinforced HA-GO coating

Before the EPD process, nanocomposite suspensions consisting of HA-GO nanopowder and chitosan in ethanol:water solution with a volume ratio of 80:20 were prepared. In this respect, 5 wt% suspension of HA-GO nanopowder in ethanol:water solution was primarily prepared. Separately, chitosan solution was prepared in 3% acetic acid solution. In order to evaluate the role of chitosan concentration on the coating properties, various concentrations of chitosan solution (0.5, 1 and 1.5 mg/ml) were prepared. Consequently, HA-GO suspension was mixed with chitosan solution with the volume ratio of 85:15. The pH of solution was adjusted at 4 by adding a dilute acetic acid solution.

The EPD process was conducted under continuous stirring using 30V DC power for 3 min while a stainless steel electrode (anode) and a Ti substrate (cathode), 1 cm apart were applied. The coated sample was taken out carefully from the EPD cell and dried horizontally in the air at room temperature. Finally, the coatings were cross linked using 0.5% glutaraldehyde for 3s and then dried horizontally in the air at room temperature for 24 h. According to the chitosan concentration (0.5, 1 and 1.5 mg/ml), the samples were named as 0.5CS-30V-3 min, 1CS-30V-3 min and 1.5CS-30V-3 min, respectively.

2.5. Characterization of nanopowders and coatings

HA-GO, GO and HA nanopowders were characterized by transmission electron microscope (TEM, Philips 208S) and scanning electron microscope (SEM, Philips, XL30 SERIES). Before SEM imaging, the samples were sputter coated with a thin layer of gold. Furthermore, the average particle size was characterized using ImageJ software. Moreover, surface morphology and chemical composition of the coatings were characterized using SEM and energy dispersive X-Ray spectroscopy (EDX). The chemical composition of HA-GO, GO and HA
nanopowders and the coatings was performed using X-ray diffraction (XRD, X'Pert Pro X-ray diffractometer, Phillips, Netherlands) technique carried out with CuKα radiation (λ = 0.154 nm) at a generator voltage of 40 kV. Moreover, the crystallite size of powders was estimated using Sherrer equation (Eq. (1)):

\[L = \frac{0.9\lambda}{β \cos θ} \]

(1)

where \(L \) is crystallite size (nm), \(λ \) is wavelength (nm) of X-ray, \(β \) is width at half maximum of peaks and \(θ \) is the angle of a specific peak (degree). Fourier transform infrared spectroscopy (FTIR, Bomem, MB Measurement, the frequency range was from 105 Hz to 102 cm\(^{-1}\)).

2.8.1. Cell viability study

The relative viability of cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), according to manufacturer protocol (Sigma-Aldrich). At the specific time points, before removing the culture medium, 50 μl of MTT solution (0.5 mg/ml in a phosphate buffer solution (PBS)) was poured into each well. After 4 h incubation at 37 °C under 5% CO\(_2\), the formazan purple crystals were dissolved in dimethyl sulfoxide (DMSO solution, Sigma). The purple solution was then placed in 96-well plates and their optical density (OD) was measured at the wavelength of 490 nm using a microplate reader (Biotech) against DMSO (blank). Finally, the relative cell viability was expressed as following [38]:

\[\text{Cell viability (\% control)} = \frac{A_{\text{Sample}} - A_{\text{Blank}}}{A_{\text{Control}} - A_{\text{Blank}}} \times 100 \]

(2)

where \(A_{\text{Sample}}, A_{\text{Blank}} \) and \(A_{\text{Control}} \) were the absorbance of the sample, blank (DMSO) and control (TCP), respectively.

2.8.2. Cell morphology study

Morphology of the cells seeded on the samples was studied using SEM technique. After 7 days of culture, the cells were fixed with 2.5% glutaraldehyde solution (Sigma) for 3 h. Subsequently, the cell-seeded samples were rinsed twice with PBS, and dehydrated in the graded concentrations of ethanol (30, 70, 90, 96 and 100 (v/v) %) for 10 min, respectively. After complete drying at room temperature, the samples were imaged using SEM.

2.8.3. Immunostaining for cell cytoskeletal organization

Immunostaining was performed to assess the effect of the surface coating on the cytoskeletal organization (F-actin) of MG64 cells after 7 days of culture. After 30 min-fixation of the cell-seeded samples in 4% (v/v) paraformaldehyde (Sigma) at room temperature, they were permeabilized in 0.1% Triton X-100 (Sigma) for 5 min. Consequently, the cell-seeded samples were blocked in a 2% bovine serum albumin (Sigma) solution in PBS for 1 h. After two times rinsing with PBS, the samples were incubated in a 1:40 dilution of rhodamine phalloidin (Cytoskeleton, USA) solution for 30 min to stain the actin filaments. Subsequently, the cell nuclei were stained with a 1:1000 dilution of 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma) in PBS for 5 min. Finally, the samples were visualized using a confocal microscope (Leica TCS SPE, Wetzlar, Germany).

2.9. Statistical analysis

The cell culture data in this study were examined using one-way ANOVA analyses and the least significant difference test and reported as mean ± standard deviation (SD). To determine a statistical significance between groups, Tukey-Kramer post-hoc test using GraphPad Prism Software (V.6) was applied and P-value < 0.05 was defined as statistically significant.
3. Results and discussion

3.1. Characterization of HA-GO nanopowder

Using the EPD process, the co-deposition of multi-components was a complex approach, thus, HA-GO nanopowder with the weight ratio of 45:3 was in-situ synthesized, at first. The weight ratio between these two components was optimized via preliminary experiments. XRD patterns of the HA-GO nanopowder as well as GO and HA, synthesized in a similar approach, are presented in Fig. 1a. The XRD pattern of pure HA powder revealed a good correlation with the standard HA phase with reference code 01-074-1243 showing that the HA was pure and single-phase. Moreover, crystallite size of the HA nanopowder estimated according to the Scherrer equation was about 26 nm. Furthermore, the XRD pattern of GO nanosheets consisted of a peak centered at 20 = 11.1° corresponding to the (001) plane and 29 = 42.5° relating to the (100) plane [33,39]. Moreover, the XRD pattern of HA-GO nanopowder consisted of the main characteristic peak of HA at 29 = 31.8°, without any secondary phase. Furthermore, the crystallite size of GO component could not be detectable in the XRD pattern of HA-GO nanopowder, which might be due to the low concentration of GO in the composite powder or the less crystallographic order of GO owing to the ultrasonic dispersion of solution during the synthesizing process. Similarly, Li et al. [33] showed that the GO characteristic peak was not detected at GO-hyaluronic acid-HA nanocomposite coatings due to its less crystallographic order. The crystallite size of HA in the HA-GO nanopowder was similarly calculated around 28 nm showing that the GO nanosheets did not play a significant role in the nucleation and growth of HA nanopowder.

In order to confirm the presence of HA and GO in the synthesized HA-GO nanopowder, FTIR spectroscopy was applied (Fig. 1b). The FTIR spectrum of GO consisted of the peaks centered at 1630 cm$^{-1}$ and 1730 cm$^{-1}$ related to the C–O band (carboxylic group) and the OH bond, respectively. Moreover, the peaks range of 3300–3700 cm$^{-1}$ was related to OH$^-$ group in GO nanosheets. In another word, the FTIR spectrum of HA consisted of the absorption bands at 610, 1037 and 11.1° corresponding to the (001) plane and 29 = 42.5° relating to the (100) plane [33,39]. Moreover, the XRD pattern of HA-GO nanopowder consisted of the main characteristic peak of HA at 29 = 31.8°, without any secondary phase. Furthermore, the crystallite size of GO component could not be detectable in the XRD pattern of HA-GO nanopowder, which might be due to the low concentration of GO in the composite powder or the less crystallographic order of GO owing to the ultrasonic dispersion of solution during the synthesizing process. Similarly, Li et al. [33] showed that the GO characteristic peak was not detected at GO-hyaluronic acid-HA nanocomposite coatings due to its less crystallographic order. The crystallite size of HA in the HA-GO nanopowder was similarly calculated around 28 nm showing that the GO nanosheets did not play a significant role in the nucleation and growth of HA nanopowder.

3.2. Characterization of nanocomposite coatings on Ti substrate

After successful synthesis of HA-GO nanoparticles, nanocomposite coatings consisting of various amounts of chitosan concentrations (0.5, 1 and 1.5 mg/ml) were deposited on the chemically treated Ti sheets. Fig. 3a shows the SEM images of nanocomposite chitosan reinforced HA-GO nanopowder consisting of various amounts of chitosan. All coatings consisted of HA-GO nanoparticles which uniformly distributed on the whole surface. Moreover, the chitosan covered surface of the nanoparticles and filled the pores. However, increasing the chitosan content resulted in a lower deposition rate of HA-GO nanoparticles which might be due to the enhanced viscosity of electrolyte leading to lower mobility of the particles. Similarly, Mahmoodi et al. [11] reported an optimized concentration of viscosity for obtaining the maximum deposition rate of particles. Moreover, increasing the chitosan concentration resulted in the formation of micro-cracks which could be clearly detected in 1.5CS-30V-3 min sample. It might be due to enhanced water absorption with increasing the chitosan content which its evaporation process could lead to the formation of cracks in the coatings [43].

Cross-section images of the nanocomposite coatings (Fig. 3b) clearly showed the formation of coatings with various thicknesses, depending on the chitosan content. Increasing the concentration of chitosan from 0.5 to 1 and 1.5 mg/ml resulted in the reduced thickness of coatings from 34.7 ± 9.1 to 29.8 ± 4.7 and 16.4 ± 5.7 μm, respectively, confirming the role of chitosan on increasing the viscosity of electrolyte solution which led to less movement of HA-GO nanoparticles, and
hence, more difficult precipitation on the Ti substrate. Moreover, detachment of the coating from substrate could be observed at higher chitosan concentrations (i.e. 1 and 1.5 mg/ml of chitosan), more possibly due to the inability of chitosan to provide strong interaction with the substrate. Additionally, according to Fig. 3c, the average pore size of the coatings slightly reduced with increasing chitosan concentration which could be due to filling the pores with chitosan particles. However, the difference between the average pore size of samples was not significant ($P > 0.05$). XRD patterns of the nanocomposite coatings (Fig. 3d) confirmed that whole coatings consisted of HA component. In addition to Ti characteristic peaks at $2\theta = 35.3^\circ$, and 70.8°, HA peaks could be detected as the main phase. However, due to the disordered structure of GO nanosheets and amorphous nature of chitosan, these two components could not be clearly detected in the patterns. Yang et al. [49] similarly reported that the characteristic peaks of GO could not be detected in the XRD pattern of chitosan-GO nanocomposite coating, demonstrating the formation of the fully exfoliated structure of GO sheets in the polymer matrix and the disappearance of the regular and periodic structure of GO. EDX-mapping analysis of 0.5CS-30V-3 min sample (Fig. 4a) also clearly confirmed that calcium and phosphorus ions with atomic ratio of 1.68 were uniformly distributed in whole surface of the coating. Moreover, FTIR spectrum of 0.5CS-30V-3 min (Fig. 4b) showed that the nanocomposite coating consisted of the main characteristic peaks of all components, confirming the presence of GO, HA, and chitosan in the coating. Noticeably, the presence of a peak at 1630 cm$^{-1}$ confirmed the presence of GO in the coating. Moreover, due to the interaction between GO and chitosan, and the deformation of O–H bond in water, no peak was observed in the nanocomposite coatings at 1730 cm$^{-1}$ [44].

In addition to coating thickness and pore size, the chitosan concentration revealed a significant effect on the surface roughness and water contact angle (Table 1). The results revealed that the surface roughness (Ra) significantly enhanced (around 5 times) after electrophoretic deposition. Moreover, increasing the chitosan concentration

Fig. 2. SEM and TEM images of GO (a and b), HA (c and d) and HA-GO nanoparticles (e and f).
resulted in a reduction of surface roughness (1.4 times). It might be due to the role of chitosan concentration on the reduced deposition of HA-GO nanoparticles on the surface. This result was similarly reported in previous researches. For instance, Ordikhani et al. [20] studied the GO/chitosan film and observed that the surface roughness increased with the addition of GO to the chitosan polymer matrix. Furthermore, thanks to the hydrophilic nature of chitosan, increasing the chitosan content resulted in enhanced wettability of the coatings. Our results demonstrated that the water contact angle of Ti substrate (75.2 ± 3.2°) significantly reduced to 69.8 ± 3.7° (for 1.5CS-30V-3 min sample). The
improved surface roughness and hydrophilicity of the coatings could result in better protein absorption at the surface and as a result, increased cellular adhesion and cell proliferation and consequently bone formation [45].

Bioactivity is a critical factor in determining bone growth on the implant surface that prevents implant loosening [46]. The ability to form bone-like apatite on the implant surface in SBF can predict the biological function of the substances in the body [47]. SEM images of the samples after 14 days soaking in SBF solution are presented in Fig. 5a. The results showed that while the bioactivity of Ti substrate was poor, nanocomposite coatings significantly promoted the bioactivity of samples. The surface of nanocomposite coated samples was covered with spherical deposits relating to the bone-like apatite. However, the surface density of this layer enhanced with reduction of chitosan content in the coating. The pH changes of SBF solution during soaking the samples are presented in Fig. 5b. The pH value of SBF solution, exposed to the nanocomposite coated samples, revealed a decreasing trend which then went up and reached the initial pH value. This change in the overall pH value of SBF solution could be due to the presence of chitosan in the coatings. In the early stages, the dissolution of chitosan reduced pH owing to its acidic products of degradation, as similarly reported for other coatings consisting natural polymers (such as gelatin [48]). At the second week of soaking, an increase in pH value of the SBF solution was detected, which might be due to the dissolution of HA. At this time, the alkaline ions in the sample, such as calcium ions from HA, exchanged with hydronium ion (H$^+$ and H$_3$O$^+$) resulted in the formation of Ca-OH layer on the surface. Reduction of H$^+$ ions in the solution resulted in enrichment of SBF solution with OH$^-$ ions which increased the pH value. After this step, the penetration of calcium ions (Ca$^{2+}$) and phosphate (PO$_4^{3-}$) to the surface samples resulted in higher crystallization and growth of the CaO-P$_2$O$_5$-rich amorphous layer which consequently led to the formation of bone-like apatite sediments [49,50]. To evaluate the calcium and phosphorus ions in SBF solution after immersing the samples for 14 days, ICP test was performed (Fig. 5c). Compared to the concentration of calcium and phosphorus ions in the SBF solution (100 and 31 mg/l, respectively), the calcium ion concentration of SBF solution increased slightly. However, increasing the chitosan content of the coatings results an increase of Ca ion concentration in the SBF solution. Moreover, the concentration of phosphorous ions in the coating decreased with increasing the chitosan coating. Furthermore, the concentration of calcium and phosphorus in the SBF solution in contact with Ti decreased slightly. The general trend governing bioactivity evaluation in the SBF solution is the competition between dissolution and re-sedimentation processes. Therefore, according to our results, the nanocomposite coated sample containing 1.5 mg/ml chitosan showed higher calcium solubility than others, owing to the presence of micro-cracks. These micro-cracks led to an increased surface reactivity and release of more ions from the coating to the surrounding environment.

In order to evaluate the role of chitosan concentration on the cell behavior, MTT assay was performed (Fig. 6). The results showed that the proliferation of MG63 cells seeded on all samples significantly enhanced from day 1 to day 7 ($P < 0.05$). Noticeably, the viability of MG63 cells on the 1CS-30V-3 min sample significantly enhanced from day 1 to day 7 ($P < 0.05$). Noticeably, the viability of MG63 cells on the 1CS-30V-3 min sample significantly enhanced from day 1 to day 7 ($P < 0.05$).

Table 1

<table>
<thead>
<tr>
<th>Sample name</th>
<th>$R_a(\mu m)$</th>
<th>Water contact angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.47 ± 0.02</td>
<td>75.2 ± 3.2</td>
</tr>
<tr>
<td>0.5CS-30V-3 min</td>
<td>2.33 ± 0.13*</td>
<td>73.6 ± 2.6</td>
</tr>
<tr>
<td>1CS-30V-3 min</td>
<td>2.11 ± 0.68*</td>
<td>71.8 ± 1.6</td>
</tr>
<tr>
<td>1.5CS-30V-3 min</td>
<td>1.58 ± 0.32</td>
<td>69.8 ± 3.7</td>
</tr>
</tbody>
</table>

For the interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.
88.3 ± 5.7 (% control) (at day 1) to 257.2 ± 1.2 (% control) (at day 7). However, our result showed that the cell viability significantly reduced form 119.3 ± 5.1 (% control) to 51.9 ± 14.8 (% control), after the first day of culture, when the chitosan concentration increased from 0.5 to 1.5 mg/ml \((P < 0.05)\). It could be concluded that cell attachment reduced with increasing chitosan concentration. Moreover, compared to the control sample (TCP), the viability of cells on the samples was significantly improved. For instance, after 7 days of culture, the viability of cells on 1CS-30V-3 min sample was noticeably (2.6 times) greater than the control sample. It might be due to the stimulatory role of GO, HA and chitosan on the cell proliferation. Shi et al. [40] showed the effective role of HA on improvement of MG63 proliferation. In another study, Ordhikhani et al. [20] revealed that the presence of GO up to 30 wt% resulted in improved proliferation of cells. Furthermore, our results revealed that after 7 days of culture, the viability of cells on at 1CS-30V-3 min sample was significantly enhanced compared to other samples \((P < 0.05)\). It might be due to simultaneous role of chemical and physical properties of this sample on the cell attachment and proliferation.

The morphology of cells cultured on the samples for 7 days, was also investigated using SEM imaging (Fig. 7a). MG63 cells were attached and spread on the surface of all specimens. According to high magnification images, with increasing the chitosan concentration up to 1 mg/ml, cell spreading is significantly improved. However, more increasing of the chitosan concentration (1.5 mg/ml) resulted in less cell spreading. In this sample, the MG63 cells with spherical morphology (indicated by red circle) could be detected on the surface, indicating the lower cell adhesion to the coating. We also investigated the actin cytoskeletal organization of MG63 cells on the various nanocomposite coated samples after 7 days of culture (Fig. 7b). Our results confirmed that the cell cytoskeletal organization was noticeably dependent on the coating properties. While increasing the chitosan concentration upon 1 mg/ml noticeably improved cell attachment and spreading, the cell surface area reduced at 1.5CS-30V-3 min sample. Cells grown on the 1CS-30V-3 min sample revealed more extended cytoskeleton which could be contributed to promoted cell attachment and consequently proliferation. Between various samples, less cells were attached and spread on the surface of 1.5CS-30V-3 min samples confirming MTT results.

EIS analysis was performed on the uncoated Ti and nanocomposite coated samples and, consequently, the Nyquist and Bode plots were drawn (Fig. 8a and b). All curves revealed one time constant. However, for better fitting, an equivalent circuit with two-time constants was applied \([10,51]\). Therefore, the proposed equivalent electrical circuit has two parallel time constants (Fig. 8c), where each time constant consisted of a resistance \((R)\) and a constant phase element \((CPE)\). The CPE, which actually replaces the ideal capacitor \((C)\), was due to the presence of porosity, heterogeneity and possible cracks in the coating \([52]\). The time constant described by \((CPE_b-R_b)\) was related to the diffusion barrier action of the oxide passive film, which is primarily formed on Ti substrate. By applying the composite coatings, the electrical elements of \(CPE_b\) and \(R_b\) (Table 2) were increased due to the further diffusion barrier action provided by the coating layers. However, the coating layers have not shown additional time constant because of their porous structure which cannot strongly prevent the penetration of aggressive ions. On the other hand, the time constant presented as \((CPE_i-R_i)\) was used for raising the accuracy of fitting. It is believed that the \(CPE_i\) is related to the interface between the oxide passive layer and Ti substrate, while the \(R_i\) is determined by the resistance of charge transfer \([51]\). The values obtained by the selected circuit are presented in Table 2. According to the obtained results, due to the higher resistance of the barrier layer \((R_b)\) compared to the interface \((R_i)\), the corrosion performance of the coatings was mainly determined by the barrier layer resistance. Moreover, the sum of \(R_b\) and \(R_i\), indicating the total resistance of the coating \((R_{tot})\), demonstrated that the 0.5CS-30V-3 min coating showed the highest Faradic resistance.

Fig. 7. a) SEM images (at two different magnifications) and b) Fluorescence microscopy images of the phalloidin/DAPI stained MG63 cells cultured on the Ti coated samples containing 0.5 (0.5CS-30V-3 min), 1 (1CS-30V-3 min) and 1.5 mg/ml (1.5CS-30V-3 min) chitosan, after 7 days of culture. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
According to the Bode-angle diagrams (Fig. 8b), the plateau region at low frequencies (around 70°) for the coating containing 0.5 mg/ml chitosan (0.5CS-30V-3 min) is higher than others, indicating better diffusion barrier effect. By the formation of cracks at higher chitosan content, the SBF solution could easily penetrate in the coating leading to create localized corrosion. Furthermore, the electrochemical evaluation of the coated samples revealed that the barrier layer resistance of all coatings was higher than that of Ti substrate confirming that all the nanocomposite coatings have improved the barrier property of samples in the SBF solution due to the reinforcement of primarily formed passive layer of Ti substrate. This behavior has been similarly reported in ref. [10].

Corrosion behavior of the coatings was also investigated using potentiodynamic polarization test (Fig. 9). The passivation current density (i_p) and corrosion potential (E_{corr}) are presented in Table 3. The results showed that all the specimens exhibited better corrosion behavior (lower current density and higher potential) than Ti substrate. However, among the coatings, the nanocomposite coating containing 0.5 mg/ml chitosan (0.5CS-30V-3 min) revealed a passive current density of about 21 nA/cm2 which was significantly lower than that of Ti with a current density of about 200 nA/cm2. The lower penetration of the corrosive solution into the coating resulted in improved passivation behavior as indicated by an increase in the slope of the anodic branch. However, after the passivation behavior, a breakdown potential (E_b) could be observed where the localized corrosion of the substrate initiated. It is clear from the curves that, the 0.5CS-30V-3 min sample

Table 2
Parameters obtained from EIS test of the coatings on Ti substrate by fitting using the equivalent circuit.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Barrier layer</th>
<th>Interface of metal/passive film</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_0</td>
<td>CPE$_{b,T}$ (μF cm$^{-2}$ s$^{-1}$)</td>
<td>R_b (MΩ cm2)</td>
<td>n_i</td>
</tr>
<tr>
<td>0.5CS-30V-3 min</td>
<td>0.94</td>
<td>53.42</td>
<td>33.01</td>
<td>0.64</td>
</tr>
<tr>
<td>1CS-30V-3 min</td>
<td>0.99</td>
<td>77.33</td>
<td>19.79</td>
<td>0.71</td>
</tr>
<tr>
<td>1.5CS-30V-3 min</td>
<td>0.88</td>
<td>55.64</td>
<td>2.97</td>
<td>0.75</td>
</tr>
<tr>
<td>Ti</td>
<td>0.79</td>
<td>34.55</td>
<td>0.32</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Table 3
Passivation current density, corrosion potential and breakdown potential of the coating on Ti substrate.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>i_p (nA cm$^{-2}$)</th>
<th>E_{corr} (V vs. SCE)</th>
<th>E_b (V vs. SCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5CS-30V-3 min</td>
<td>21</td>
<td>-0.2</td>
<td>0.13</td>
</tr>
<tr>
<td>1CS-30V-3 min</td>
<td>47</td>
<td>-0.33</td>
<td>0.11</td>
</tr>
<tr>
<td>1.5CS-30V-3 min</td>
<td>80</td>
<td>-0.35</td>
<td>0.10</td>
</tr>
<tr>
<td>Ti</td>
<td>200</td>
<td>-0.48</td>
<td>-0.22</td>
</tr>
</tbody>
</table>
Fig. 10. (a) SEM image of anodized Ti consisting of titanium nanotube (TiNT), (b) SEM images of surface, (c) cross-section of the anodized 0.5CS-30V-3 min and (d) EDX-mapping of anodized 0.5CS-30V-3 min coated sample showing well distribution of HA nanoparticles.

Fig. 11. The representative surface macrostructure of 0.5CS-30V-3 min and anodized 0.5CS-30V-3 min coupons after adhesion test.

Fig. 12. (a) Nyquist and (b) Bode plots of the anodized 0.5CS-30V-3 min coated sample compared to the anodized Ti, 0.5CS-30V-3 min and pure Ti.
Our results demonstrated that the formation of TiNT did not have a significant role on deposition rate of HA nanopowder during the EPD process. The HA nanopowder with calcium to phosphorus ratio of 1.68 was uniformly distributed in whole coating thickness. Moreover, detachment of the coating layer was not identified which confirmed appropriate adhesion between the coating and anodized substrate surface. Adhesion strength of the nanocomposite coating deposited on Ti and anodized Ti was evaluated using the adhesion test. According to Fig. 11, while the adhesion of the 0.5CS-30V-3 min nanocomposite coating on the activated titanium was in the 2B class, it was improved to 4B class on the anodized titanium (anodized 0.5CS-30V-3 min), confirming the effective role of anodizing treatment on improving the adhesion strength of the coating. Mollie et al. [55] applied chitosan-based nanocomposite coating on the titanium substrate by EPD technique, and similarly showed the adhesion strength of 2B. Yan et al. [21] showed similarly that the formation of TiNT on the surface resulted in improved adhesion of HA-gelatin-GO composite coating to the substrate.

The EIS analysis was also performed on the anodized and consequently coated sample (anodized 0.5CS-30V-3 min) and the Nyquist and Bode plots were reported (Fig. 12a and b). The proposed equivalent electrical circuit was similar to that of 0.5CS-30V-3 min sample (Fig. 8c). The elemental values obtained by the selected circuit are presented in Table 4. The anodized 0.5CS-30V-3 min sample revealed the highest impedance and therefore revealed the best barrier performance. Moreover, the anodized 0.5CS-30V-3 min sample showed the highest total resistance (Rtot) about 220 MΩ·cm², which is about 6.7 times higher than that of 0.5CS-30V-3 min sample. According to the Bode-angle diagram (Fig. 12b), the plateau region at low frequencies can be observed around 80° for the anodized 0.5CS-30V-3 min sample, which is higher than the others, confirming the better diffusion barrier effect of this coating.

Corrosion behavior of coating was also investigated using potentiodynamic polarization test (Fig. 13) and the passivation current density and corrosion potential are summarized in Table 5. The results showed that the nanocomposite coating developed on the anodized Ti substrate revealed a passive current density of about 0.054 nA/cm² which is significantly lower than the Ti substrate with a current density of about 29.55 nA/cm² which is about 6.7 times higher than that of 0.5CS-30V-3 min sample. According to Yan et al. [21], the production of TiNT on the Ti substrate surface enhanced the bonding of the top coating leading to the high strength of adhesion. Therefore, the anodized layer not only enhanced the barrier property of the coatings, but also effectively prevented the occurrence of localized corrosion on the Ti substrate, as no breakdown potential was seen.

4. Conclusions

Novel and uniform nanocomposite coatings of chitosan reinforced hydroxyapatite (HA)-graphene oxide (GO) (CS-GO-HA) containing various amounts of chitosan were successfully applied on Ti substrate using electrophoretic deposition technique. The role of two layers of titanium oxide nanotube (TiNT) and CS-GO-HA on the physical and electrochemical properties of Ti substrate was evaluated. Increasing the amounts of chitosan content led to a reduction in deposition rate of HA-GO nanoparticle as well as thickness and pore size of the coatings and...
also encouraged the formation of micro-cracks. The water contact angle reduced with increasing the chitosan content, while apatite formation in the SBF solution and cell viability reduced. The cell viability reduced with increasing the chitosan content, while apatite formation also encouraged the formation of micro-cracks. The water contact angle after the first day of culture. Furthermore, the corrosion evaluation revealed a better barrier property for the chitosan-HA-GO coating containing 0.5 mg/ml chitosan.

The presence of TINT as the intermediate layer successfully resulted in the formation of uniform and crack-free chitosan-HA-GO coating with the thickness of about 27.5 ± 7.5 μm. The TINT intermediate layer provided improved adhesion of the coating to substrate leading to better passivation behavior. Our results concluded that the two-step anodizing and electrophoretic deposition of chitosan-HA-GO nano-composite might be a promising implant coating material. However, extend in vivo studies are necessary to confirm this application. To conclude, the fabricated nanocomposite coating could be suggested as a novel bioactive and corrosion resistant layer for bone implant application.

References
